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Quantum mechanics on the lightcone: 11. the spin-: case 

S N Mosley and J E G Farina 
Department of Malhematics, University of Nottingham, Nottingham NG7 ZRD, UK 

Rseiwd 6 March 1992. in anal form 27 May 1992 

AbstrseL Wc p m l  (1) a set of spin-f Poinear6 group operators acting on the past 
lightcone, (2) a continuity equation resulting from the Hsmillonian wilh a positive- 
deEnitc density, (3) Ihe spin-f basis stalea In the non-relativistic limit our Hamiltonian 
is equivalent to the PauliSchridinger equation. We also consider the Hamiltonian 
modiEcd by a radial potential. 

1. Introduction 

We follow on from our paper on the spin-zero case [l]. We know of two previous 
papers on the spin-f lightcone quantum theory. Peres [2] derived a set of spin-f 
operators satisfying the Poincark group algebra, and this paper may be regarded as 
an extension of Peres’ work in that: 

(1) We present an alternative set of operators related to his by a unitary 
transformation-this new set has the advantage that the Hamiltonian reduces to 
the PauliSchrBdinger Hamiltonian in the non-relativistic limit. 

(2) We define the inverse operators p-’ in the Peres paper. 
(3) We derive a 4-current satisfying the continuity equation from the new Hamil- 

tonian, the zero component of which is a positive-definite density. 
(4) We find the basis states, which turn out to be those found by Derrick [3], 

from a different approach. 
l l e  spin-; wavefunctions for both positive and negative energies (spin up and spin 

down) are two-component wavefunctions, instead of the usual Dirac fourcomponent 
wave functions 

Finally in section 5 we apply the spin-; Hamiltonian modified by a radial (re- 
tarded) potential along the past lightcone: the energy levels turn out to be the same 
as in the Dirac case with a corresponding radial potential, although the wavefunction 
is different 

2. The set of spin-f operator6 In lightcone coordinates 

In [I] we found a set of spin-zero operators in lightcone coordinates satisfying the 
the Poincark group algebra: 

[PA, PPI = 0 (2.1) 
[j’’,p’] = i(q”’pA - qAYp’) (2.2) 

(2.3) [ jAr ,  j v p j  = i(,,Apj’ly + , , P v ~ A P  - , , A ~ ~ P P  - II P P  3 ‘ A V  ) .  
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In the non-relativistic limit, when the past lightcones get flattened out to the usual 
constant-time hyperplanes, the spin-zero operators reduce to the well known operators 
obeying the Galilei group algebra, with the usual SchriMinger Hamiltonian. Here 
we adapt the spin-zero operators to a set of spin-; operators, satisfying the the 
Poincark group algebra, and the spin-f Hamiltonian reduce to the PauliSchrBdinger 
Hamiltonian in the non-relativistic limit. We will use the results and notation of [l]. 

First we follow Peres [2] and Derrick (31 by adding the spin term +U to the J 
rotation operators, and a +(U x t) term to the K boost operators, where U are the 
usual Pauli matrices. So J, K now become the 2 x 2 operators 
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We will show that the following energy-momentum operators together with J, K 
satisfy the P o i n c a ~  group algebra: 

Hepint = m +  f ( ~ * i r ) & E : ’ f i ( ~ . i r )  (2.6) 

where [l] 

and Ezl is a Lorentz-invariant integral operator [l]. We can see that Hspini is a 
symmetrized version of the 2 x 2 form of the spin-zero Hamiltonian HWm. where 
(see (3.10) in [l]) H,,, 

First note that by multiplyiing the spin-f Hamiltonian operator (2.6) on the right 
by (U. ir) fi we obtain 

m + f E i1 f i i r2  4. 

H8pi.i (U .e)& m ( a .  +)fit $(u.ir)fiZ:lfi(u. +)’& 

= m (U * i r)&+ +(U. ir) & E i 1 d + r 2  fi 3 (U. ir) fi H,,,, . (2.9) 

Similarly we can derive 

PSPi” ; (U i r )  d = (U . d P z e m  (2.10) 

where pspin; is the spin-zero momentum operator [l]. Then calling the operator 
(U. ir) 4 6 and using (2.10), (2.11) we can deduce the following commutation 
relations: 
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so that as the spin-zero energy-momentum operators commute it follows that the 
spin-f operators also commute, satisfying (2.1). 

Next we consider the 'mixed' commutation relations (2.2). The relations involving 
the boost operator [K, HI = i p  and [ I P ,  p b ]  = iH6", may he checked with the 
aid of the following identities. 

Due to (-y, y) being a 4-vector [l], it follows that 

[ K O ,  yb] = -iy6" [K, y] = -iy (2.12) 

and as E, is Lorentz-invariant [l], 

[K, E,] = [K, EZl] = 0. (2.13) 

Also needed are 
1 1 [ K , ( u . + ) ] = i a - E  - fi mfi 

(2.14) 

[ K a , * b ] = ~ [ ( ~ " ~ ) ( a . C ) + ( a - A  )( U -91 - +im60b .  (2.15) 

The relations (2.2) involving the rotation operator J may be checked with the aid 
of [J, (a . A)] = 0. The commutation identities of the Lorentz operators (2.3) are 
readily verified [2], and so finally the operators (2.4)-(2.7) are the required set of 
Poincare group operators. 

2.1. Hemiticily 
The spin-zero Loren& operators are Hermitian in the space 71, [l], which is the 
Lorentz-invariant positivedefinite scalar product space on the past lightcone 

and the Hermiticity of the spin-$ Loren& operators is unaffected by the extra spin 
terms. The Hamiltonian operator (2.6) is Hermitian in W,, due to its symmetric 
construction (recalling that A, y, EL1 are all Hermitian in 71, [I]). Then p must 
also be Hermitian in 71, due to the identity p = -i[K, HI. 

~ 2.2. The evolution equation 
The Hamiltonian (2.6) implies the evolution equation 

a 1 
aT 2 i-$ Hspin: $ = m $  + -(a. +)fiE;'fi(u .+)$ (2.17) 

which is an integro-differential equation of first order in time, where $ is a two- 
component column vector. 'Ib determine the non-relativistic approximation of (2.17a), 
we temporarily reinsert the speed of light c (we have been using natural units with 
h = c = 1) obtaining 

in the non-relativistic limit when [l] E;\ N l / y m c  as c - 00. 'bking out the rest 
energy mca and putting $ = 4 4 ,  we obtain the non-relativistic PauliSchmdinger 
equation H 4 = [(a .p)a/2m] 4. 
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2.3. The Hamiltonian in radial form 
From the Hamiltonian (2.6) we can derive 

Hspin+ = m + -(u.fr)fiE;'fi(u.+?) 
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1 
2 

using (U. t)' = 1 and the fact that E;' commutes with the angular variable (U. f ) .  
In the appendix we prove that 

(u -i 6) ( 0 .  i) = ;E,,, 1 - Y R  i - m 

(u. t) (u. -i&) = y ~ ,  1 + -n- i .  m 

and 

Y 

where R is the operator ( u . t + l )  and t is the angular momentum operator -iyx %. 
so 

1 

Y Y 

(2.19) 

The operator R is well known in Dirac theory. It is an angular operator so it commutes 
with YE, E;'. It also commutes with Hspin+ as is easily seen from (2.19). It has 
positive and negative integer eigenvalues. 

We note that Peres derived the Hamiltonian (his equation (43) in [2]) 

(2.20) 

which was obtained by a vely different approach (by reduction from the 4 x 4 DiraC 
operator in lightcone coordinates). His operator p is identical to our 

eimy .-imy 
-E,- 
f i f i  

p-l = eimy fiC;'fie-"Y . 
so naturally we can define his operator 

As all other components in the Hamiltonians commute with e i m y ,  then the 
Hamiltonians can be made equivalent by the simple unitary transformation H P . ~ .  = 
e imvH . le-imy. 

w n  
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3. The continuity equation 

The evolution equation with the Hamiltonian in the form (2.18) is 

4691 

where + is a two-component column vector. We can wite the above as the coupled 
equations 

in which we regard x as an auxiliary variable which must satisfy ( 3 . B ) ,  whereas ( 3 . b )  
is the true dynamical equation. Next put 

*=fi& x = f i + ,  

and multiply (3.2) from the left by l / f i  obtaining 

(3.3) 

Equations (3.4) can now be used to derive a continuity equation as follows. First 
form the Hermitian conjugate equations to (3.4): 

(3.50) 

(3.56) 

Now multiply equation ( 3 . k )  from the left by +1, t and (3.50) from the right by 

&, then subtract, obtaining 
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We now rearrange the second term on the right-hand side using (3.46) and (3.56): 
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where for the last line we have used the identity b-&y = & o t. 
Equation (3.6) is now in the form of a continuity equation & po + & . p = 0 

...L-..̂ 
W,L* lb  

(3.7) 

Recall from (3.3) that 

So substituting the above into (3.7) we obtain finally 

where x is (from (3.26)) x = &C;'y(u.-i& ) 1 ~ +. We may regard the positive- 
definite po as a probability density, and furthermore if we integrate this probability 
density over all space we obtain (11,l 11,): where 'H; is the positive-definite Lorenk- 
invariant scalar product space over the past lightcone (2.16). 

4. Basis states 

We wiii obtain positive and negative energy basis states of jiSpi,,+, deriving them from 
the spin-zero basis states [l]. 

~~. 

Equation (2.9) implies that 

Now the spin-zero Hamiltonian operator H,,,, has the positive- and negative- 
energy scalar eigenfunctions [l] uk and U which are U k -  - eiwv-imy+i*." and 
uk = e - i w y - i m y - i k . y  where w E d h .  Then H,,,,uk = WU,, and 
H,,uk = -wuk.  We can see from (4.1) how to construct eigenfunctions Of 
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HSpi,,+, having the form of 2 x 2 matrices-we can call them 'eigenmatrices'. They 

are U; = fi (..-is) uh and U; = fi (m. 4% ) vk, which are 

= - fi [m - (w  + m)- + d .  k e-iwy-imy-ik.y " I  Y (4.3) 
-.. 
We di use v: as a negative-energy (anti-particle) eigenmatrix of H,,,,+, but U; is 
unsatisfactory since it is identically zero if the momenta k are zero. 

We now obtain a satisfactoly positiveenergy eigenmatrix. Note that we can per- 
form a unitary transformation on Hap," + which changes the sign of m in this operator, 
i.e. 

(4.4) 

which identity we prove in the appendix. Now since U; is an eigenmatrix of Hapin+ 
with eigenvalue w 
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is a satisfactory positive-energy eigenmatrix of Hapi, +. 
v; from (4.3), are the same (except that we 

have the extra factor e-imy) as the basis states found by Derrick in [3] from a very 
different approach. As both columns of U,, and V, satisfy the eigenvalue equation, 
we follow Derrick's interpretation of these states, that each column of U,, V, is a 
two-component column vector eigensolution of Hspin ;-which may be identified as 
alternative spin states. So we have the left- and right-hand columns of U,, which we 
call U;, U t ,  as the particle states, and Vt, Vf as the anti-particle states. Note 
that each srare is (1 rwozomponenl column vecfor. We shall see that all four states are 
orthogonal. 

S N Masley and J E G Farina 

Our eigenmatrices, U,, and V,, 

Explicitly for zero-momentum solutions we see from (4.6) and (4.3) that 

and 

(3.15) 

(3.16) 

All states are clearly orthogonal in the rest frame and so are orthogonal in any frame. 

5. The spin-$ lightcone equation with a radial potential 

In the last section we found the eigensolutions of the free-particle Hamiltonian (2.6), 
which have a continuous spectrum of eigenvalues. We now consider the Hamiltonian 
with a scalar potential V added. This potential in the general case will be a function 
of 21, T ,  and so is a retarded potential acting on the surface of the past lightcone 
T (instead of on the constant-time hyperplane t as in the usual case). We might 
expect that static potentials-independant of 7'-would have the same effect as the 
corresponding hyperplane potential, and indeed we find that for a static radial poten- 
tial (function of y) the energy levels are the same as those obtained by inserting the 
corresponding hyperplane potential (function of r) into the Dirac equation. However 
the eigensolutions have an extra factor compared to the Dirac case. 

For stationary states we now have 

[KPi"$ + V(Y)l* = Edj .  (5.1) 

Recall Hspin; in the form (2.19). Then since A commutes with s, 

where @ is a two-component column vector. As V is a function of s the operator 
A still commutes with the modified Hamiltonian, having positive or negative integer 
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eigenvalues n = fl, f2, . . .. So now we can separate out the radial part of (5.2) as 
a single-component (scalar) equation. Replacing k with n, 

(5.3) 

or putting = % +1 and multiplyimg from the left by fi 

Now define 

Combining this last result with (5.4) we obtain the coupled equations 

Cm - (m - i t )  +1 = 0 .  
Y 

We make these equations more symmetrical by making the transformations 
ei(E-m)Y +1, bZ = ei(E-m)Y &, then recalling that C, 

= 
E -i& + m = 48, +m, 

Now add and subtract (5.5) to obtain 

- i ~ , ~ + l + + ~ ~ - ~ ~ + l - + z ~ + i ~ ~ + l + + z ~  Y = E ( + ~ - + ~ ) - ~ v $ ~  

- i ~ , ( t ~ ~ - + ~ ) + m ( + ~ + + ~ ) - i ~ ( + ~ - + ~ ) =  Y E ( + , + + , ) - ~ v $ ,  

or putting + QZ) = i F  and (Q1 - &) = G, then 

- i a , i F -  m G + i z i F =  E G - V  ( G + i F )  

- i a Y G + m i F - i n G =  E i F - V ( G + i F ) .  

Y 

Y 

Rearranging and multiplying the second equation by i, we obtain 
n a, F - - F  = (m + E ) G  - i V  (F - iG)  

8, G + -G = (m - E ) F  + V ( F  - iG) . 
Y 
n 
Y 
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These equations are now in a similar form to the coupled radial equations obtained 
in the standard reduction of the Dirac equation with a radial potential V(7). For 
example in Schiff’s [SI treatment of the Dirac radial equations he obtains (equation 
(53.15)), in our units, 

S N Mosley and J E G Farina 

K a, F’ - :F‘ = ( m  + E)G‘ - V G‘ 

(5.7) 

If we multiply both equations (5.6) from the left by exp(i I Vdy) they take the form 
(5.7) with 

F’ = exp ( i /Vdy) F G’ = exp ( i /Vdy)  G .  (5.8) 

Thus we obtain the same energy levels as for the Dirac case, which are dictated by 
boundary conditions for the radial wavefunctions, but our wavefunctions have the 
extra factor exp(- i IVdy).  In the case of the Coulomb potential e2/47ry, this is 
exp[i(e2/4rr) log y], which represents a rapidly oscillating term as y - 0. Of course 
when this term is multiplied by its complex conjugate it effectively disappears. Note 

vector potential inserted which is equal to the original scalar potential. This might 
well be expected due to  the change to lightcone coordinates. Then (5.8) may be 
regarded as a gauge transformation. 

th8t (5.6) may be :ega:Ged as eq.:b.%-.!en: in k:m :G (5.7) h t  -&h 8:: r88itkXa! :adia! 

6. Concluding remarks 

Although our Hamiltonian appears to be very different from Dirac’s, the energy 
eigenvalues for a radial (retarded) potential turn out to be the same as in the Dirac 
case with an equivalent potential. Our wavefunctions are only two-valued instead of 
four-valued. 

In view of the well known problems of relativistic position operators [6], we make 
fuiiuwing un uperaior .w.f,icil, a j  ii repie%i,rj iile 

on the observer’s past lightcone, we will call the retarded position operator: 

(1) It is Hermitian in the positivedefinite space %,,. 
(2) It is a covariant operator, part of the 4-vector y 5 (-y,y), in this respect 

different from the usual case, where the zero component of position is a parameter 
(c-number). 

(3) As y is the retarded position, the apparent velocity w E $, which is the 
actual velocity perceived by the observer, has very different properties from the usual 
velocity. From 111 (equations (2.10) and (2.11)) we know that 

so that an extra raaiai momentum term pll E . p appears in the denominator. For 
simplicity now consider the case when the particle is directly approaching or receding, 
i.e. lwl = ~ u l l .  Then 
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and as - H  < pll < H, (6.2) implies that w I I  lies within the limits 

- 03 < wll < +.  
For massless particles this is replaced by 

wll = -0.7 (approaching) wll = (receding) . 
The negative infinite velocity applies to a directly approaching photon, which would 
not exist on the observer's stack of past lightcones until a certain time T ,  when it 
would immediately be present at the origin. 

(4) The usual relativistic spin-!, Dirac Hamiltonian results in velocities with eigen- 
values of * e t h e  well known Zitterbewegung effect. The Foldy-Wouthuysen [7] 
transformation yields the usual velocities but at the cost of making the position 
a non-local (integral) operator. Our operator is both local and has n o  osiillatoly 
(Zitterbewegung-type) components. 

The question of velocity in the usual relativistic quantum mechanics-from the 
point of view of the localization of evolving wavepackets--has been discussed in a 
previous paper of ours (81. A similar analysis of position measurement in lightcone 
q.2entsx !!leci?e!Iie wi!! be dkn2sser! e!sewi?yhPIp. 

Appendix 

We prove the identities used in deriving (2.19), using the  identity ( d .  m) (a. n) = 
(m . n ) + i a . ( m x n )  for any 3-vector operators m, n-provided m and n commute 
with U. 

where R is the operator (U. t + 1). Similarly 

It is known (e.g. p 354 in [9]) that (.T. t) anti-commutes with R ,  i.e. 

So with Hspin + in the radial form of (2.19) 



4698 

and recalling that ( 6 .  f )  cnmmutes with E,, ELI, then 
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1 1  fiE;'&(-m-:R). (A4) 

so e2imy e-2imy = E-' 
(-m)' (-mY 

Now use the fact that eaimY E 
then 

e-2 imy  = E 
m 

which is (4.4). 
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